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I, INTRODUCTION

In the present paper we consider the spline-on-spline technique for
calculating the derivative of a function from its values on a uniform mesh,
There is computational evidence that this yields better results than the
traditional process using a single spline [I]. Dolezal and Tewarson [2 ]
have recently obtained error bounds for spline-on-spline interpolation,

The aim of this paper is to derive new consistency relations between a
cubic spline and a cubic spline-on-spline interpolant of its first derivative,
and to furnish asymptotic error estimates for the interpolation, For any
integer n~ I, let A,,: 0=XO<x 1 <". <x,,= I denote a uniform partition
of 1= [0, I] with knots x, = iII.

Given a sufficiently smooth functionf(x) defined on I, let s be an inter
polatory cubic spline of f and p a cubic spline-on-spline interpolant of ,1"

defined by

(i) s,=t;, i=O(I)n,

(ii) Pi=S;, i=O(1 )n
(I)

where ,1', = ,I' (iii ) and ,1'; = .\.'(ili), Then the following appraisal of the
"discretization error" can be found in [2]:

2

1t:'-p;I~(I/60) L 32 '1Ir+ ll llh 2 +,+ ''',
I I
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i = O( I )n. (2)
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In the present paper we shall derive a sharp asymptotic error estimate:

(i)

(ii)

/;' -.( = (h:'/12)f:41
- (h 4/360)n 61 + O(h 6

),

f/ - p; = (I{ /90)f: 6
) - (hoj756 )nRI + O(h 7)

(3 )

for any mesh point Xi distinct from the endpoints.
Using the asymptotic expansion (3)(i), Richardson-type extrapolation

gives an O(h 4
) second derivate estimate without recourse to the cubic

spline-on-spline technique:

I;'-(1/3)(4s';,/2(X i )-.I;;(X,)) = (h 4/1440)f:6
) + ... (4)

for any mesh point X, distinct from the endpoints, where sdx) and Sh/2 (x)

are cubic spline interpolants of/with uniform mesh sizes hand h/2, respec
tively. On the other hand

(5)

for any mesh point x, distinct from the endpoints.
Since the principal parts of the asymptotic expansions (4) and (5) are the

same, the cubic spline-on-spline interpolation gives about the same
estimate as the extrapolation method. As for computational effort, we have
to solve two linear systems of orders nand 2n to determine Sh and Shl2 in
the extrapolation. In the spline-on-spline technique, the coefficient matrices
for determining Sh;2 and Ph/2 are exactly the same and so Ph/2 is determined
with little additional effort. Hence we are justified using the cubic spline
on-spline technique instead of the extrapolation method.

2. CONSISTENCY RELATIONS AND ASYMPTOTIC ERROR ESTIMATES

Since sand P depend upon n + 3 parameters, two additional conditions
(which are usually taken near the endpoints) are required for the deter
mination of the splines sand p. For choices of these conditions, see Table I
in [4].

Here we take them to be the homogeneous end ones:

(i)

(ii)

;1 '.1;) = V's;, = 0,
(6)

where r is a nonnegative integer and ;1 (V) is the forward (backward) dif
ference operator. By repeated use of the consistency relation

(1/6)(s:+ I +4.1; +.1: I) = (1/2h)(.l i + I -Ii I)' (7 )
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the above end condition (6)(i) may be rewritten as

197

ri=2 (S)

(9)

where ar is a rational number and Lr(so, SI' ... , sr) is a linear combination
of s" i = O( I Jr.

For aT' by a simple calculation we have

(ao, ai' ( 3 ) = (0, -1,5),

ar+ I =(5ar-I)/(ar+I), r=3,4,"',

lim ar=2+J3.
r --+ x

We remark that the coefficients for determining s; and p; are exactly the
same under the end conditions (6).

Now we prove the following consistency relation:

THEOREM 1. Let p be a cubic spline-on-spline interpolant of the derivate
0/ a cubic spline s. Then

(1/36)(p;+2+ SP;+1 + ISp;+Sp; I +P;-2)

= (1/4h 2)(s'+2- 2s;+S; 2) i=2(I)n-2. (10)

Proof By making use of the consistency relation (7) and interpolation
condition (1 )(ii), we have

(1/6)(p;+1+ 4p;+p; I)

= (1/2h )(p; f 1- p, 1)

=(1/2h)(s;+I- S ; I)' i=I(1)n-1. ( II )

Sincep;+2 + Sp;+! + ISp; + Sp;_1 + P;-2 = (P;+2 + 4P;+1 + p;) +
4(p;+! + 4p; + p; I) + (p; + 4p; 1+ p;_ 2)' by (11) and (7), we have the
desired relation.

Next we shall prove the following asymptotic error estimates:

THEOREM 2. Under the end conditions (6), let p be a cubic spline-on
spline interpolant of .1". Then

(i) /:' - s;' = (h 2j12)fj4 1 - (h 4/360)fj6 1+ O(h ffiIn (6. r- II),

(ii) f:' - p; = (h 4/90)fj 6 1 - (h 6/756 )f~8) + O(h ffiIn
(7,r II),

Kershaw's technique [3] gives

i= 0(1 In.
(12)



198 SAKAI AND USMANI

COROLLARY. For any integer r ~ 0, we have the ahove asymptotic expan
sions with 0(h6) and 0(h7) instead oj" 0(hmin (6.r- \1) and 0(h mm (7.r I)),

respectively, for any mesh point x, distinct from the endpoints.

Proof oj" Theorem 2. First we prove the asymptotic expansion (12)( ii).
Since Sj =f" i = O( 1in, by virtue of (7) we have

(1/6)(s;+\+4s;+.I"; \)

=f: + (h2/6)f~31 + (h4/120)fj51 + (h6/5040)f~71 + ... , i=I(I)n-l.

(13 )

Denoting e(x) =f(x) - (h 4/180)P4 1(x) + (h 6/1512)P6J(x) - sIx) by Taylor
series expansion we have

(i) /J'e() = O(h'),

(ii) (1/6)(e;,1+ 4e ;+e; \)=O(h x
),

(iii) V"e:, = O( h' ).

i= 1(1 )n-I, ( 14)

By repeated use of (14)( ii), conditions (14)( i) and (iii) can be rewritten

for ri'2:

for r=2:

e;/+ar(!n 1 =O(hmin(S.r)),
( 15)

e; = 0(h 2
), e;, \ = 0(h 2

).

By applying a similar argument [4, 5] to a system of linear equations (15)
and (14 )(ii), we have

i=O(1 in, (16)

I.e.,

(17)i = 0(1 In.f; - S; = (h4/180)P~J - (h6/1512)f~71 + O(hminl~. 'I),

From (11) and (17) we have

(1/6 )(p;+ \ + 4p; + p; \) =1:'+ (h 2/6 )n4)+ (h4/360)P~J

-(h6/15120)fjX)+0(hmmI7' II), i=I(I)n-1. (18)

Using again a similar argument for a system of equations (18), together
with (6)(ii), gives

i = O( 1In. (19 )
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Next we prove the asymptotic expansion (12)( i). The following con
sistency relations at the endpoints are well known:

(i)

(ii)

(1 /3 )(2s~ + s;') =:' (2/h 2)(s I - so) - (2/h )s;),

(1/3)(2s;;+s;; d=(2/h2)(sn-sn d+(2/h)s;,.
(20)

Letting e(x)=!(x)-(h2/12)!(2)(x)+(h4/360)!(4 1(x)-s(x), by (17) (i=0
and n) and (20) we have

(i)

(ii)

(1/3 )(2e~ + e;') = O(h min (6. r - 1»),

(1/6)(e;'+ 1+ 4e;' + ei_ I) = O(h 6
), i=l(l)n-l, (21 )

(iii) (1/3)(2e;;+e;; d=O(h min (6.r II).

Using again a similar argument yields the desired asymptotic expansion
(12)(i).

Now let us denote by q a cubic spline-on-spline interpolant of the
derivate of the cubic spline p. Then, as in the proof of Theorem I, we have

(1/216)(q;+3+ 12q;+2+5Iq;+1 +88q;+5Iq; 1 + 12q;_2+q; 3)

= (1/8h 3)(/;+3 - 3/'+3 + 3!, 1 -.1;-3), i = 3( I)n - 3. (22)

Also, as in the proof of Theorem 2, we have

THEOREM 3. Il L1rq~)= \/rq;, = 0, then

In addition,

for any mesh point x I distinct from the endpoints.

i = O( I )n. (23)

(24)

By combining the Corollary of Theorem 2 and Theorem 3, we obtain a
uniform norm estimate

max I.f"(x) - q(x)1 = O(h4
),

y.~x:'(/f

h --->0, (25)

where rJ. and f3 (0 < rJ. < fJ < I) are constant independent of h.
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TABLE[

c' e:'1

\' k!(.\) k,(x) k!(x) k ,Ix)

114 1.00 105 100 1.03
[n [.00 1.00 1.00 1.00
3/4 100 1.07 0.99 1.13

3. NUMERICAL EXAMPLES

The results of some computational experiments are given in Table I for
the functions eX and e5

\. We choose n = 32 and

(26)

(27)

Let

k 2(x) = U"(x) - p'(x) }/{ (h 4/90)P6J(X) L
k,(x) = (Pl)(X) - q'(x) }/{ (h 4/60)P7 J(X)}.

Then, by (12)(ii) and (24), k 2 (x) and k,(x) tend to I for any fixed mesh
point x E (y., In as h ~ O.
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