On Consistency Relations for Cubic Splineson-Splines and Asymptotic Error Estimates

Manabu Sakai

Department of Mathematics, Faculty of Science, Kagoshima University, Kagoshima, Japan 890

AND

RIAZ A. USMANI

Department of Applied Mathematics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

Communicated by Oved Shisha

Received April 7, 1983; revised September 10, 1984

1. INTRODUCTION

In the present paper we consider the spline-on-spline technique for calculating the derivative of a function from its values on a uniform mesh. There is computational evidence that this yields better results than the traditional process using a single spline [1]. Dolezal and Tewarson [2] have recently obtained error bounds for spline-on-spline interpolation.

The aim of this paper is to derive new consistency relations between a cubic spline and a cubic spline-on-spline interpolant of its first derivative, and to furnish asymptotic error estimates for the interpolation. For any integer $n \ge 1$, let Δ_n : $0 = x_0 < x_1 < \cdots < x_n = 1$ denote a uniform partition of I = [0, 1] with knots $x_i = ih$.

Given a sufficiently smooth function f(x) defined on *I*, let *s* be an interpolatory cubic spline of *f* and *p* a cubic spline-on-spline interpolant of *s'* defined by

(i) $s_i = f_i, \quad i = 0(1)n,$

(ii)
$$p_i = s'_i, \quad i = 0(1)n$$

where $s_i = s(ih)$ and $s'_i = s'(ih)$. Then the following appraisal of the "discretization error" can be found in [2]:

$$|f_i'' - p_i'| \le (1/60) \sum_{j=1}^2 3^{2-j} ||f^{(4+j)}|| h^{2+j} + \cdots, \qquad i = 0(1)n.$$
(2)

0021-9045/85 \$3.00

(1)

In the present paper we shall derive a sharp asymptotic error estimate:

(i)
$$f''_i - s''_i = (h^2/12)f_i^{(4)} - (h^4/360)f_i^{(6)} + O(h^6),$$
 (3)

(ii)
$$f''_i - p'_i = (h^2/90)f'^{(6)}_i - (h^6/756)f'^{(8)}_i + O(h^7)$$

for any mesh point x_i distinct from the endpoints.

Using the asymptotic expansion (3)(i), Richardson-type extrapolation gives an $O(h^4)$ second derivate estimate without recourse to the cubic spline-on-spline technique:

$$f_i'' - (1/3) \{ 4s_{h/2}''(x_i) - s_h''(x_i) \} = (h^4/1440) f_i^{(6)} + \cdots$$
(4)

for any mesh point x_i distinct from the endpoints, where $s_h(x)$ and $s_{h/2}(x)$ are cubic spline interpolants of f with uniform mesh sizes h and h/2, respectively. On the other hand

$$f''_{i} - p'_{h/2}(x_{i}) = (h^{4}/1440)f'^{(6)}_{i} + \cdots$$
(5)

for any mesh point x_i distinct from the endpoints.

Since the principal parts of the asymptotic expansions (4) and (5) are the same, the cubic spline-on-spline interpolation gives about the same estimate as the extrapolation method. As for computational effort, we have to solve two linear systems of orders n and 2n to determine s_h and $s_{h/2}$ in the extrapolation. In the spline-on-spline technique, the coefficient matrices for determining $s_{h/2}$ and $p_{h/2}$ are exactly the same and so $p_{h/2}$ is determined with little additional effort. Hence we are justified using the cubic spline-on-spline technique instead of the extrapolation method.

2. CONSISTENCY RELATIONS AND ASYMPTOTIC ERROR ESTIMATES

Since s and p depend upon n+3 parameters, two additional conditions (which are usually taken near the endpoints) are required for the determination of the splines s and p. For choices of these conditions, see Table 1 in [4].

Here we take them to be the homogeneous end ones:

(i)
$$\Delta^r s_0' = \nabla^r s_n' = 0,$$
 (6)

(ii)
$$\Delta^r p_0' = \nabla^r p_n' = 0$$

where r is a nonnegative integer and Δ (∇) is the forward (backward) difference operator. By repeated use of the consistency relation

$$(1/6)(s'_{i+1} + 4s'_i + s'_{i-1}) = (1/2h)(s_{i+1} - s_{i-1}),$$
(7)

196

197

the above end condition (6)(i) may be rewritten as

$$s'_0 + a_r s'_1 = L_r(s_0, s_1, \cdots, s_r), \qquad r \neq 2$$
 (8)

where a_r is a rational number and $L_r(s_0, s_1, \dots, s_r)$ is a linear combination of s_i , i = O(1)r.

For a_r , by a simple calculation we have

$$(a_0, a_1, a_3) = (0, -1, 5),$$

$$a_{r+1} = (5a_r - 1)/(a_r + 1), \qquad r = 3, 4, \cdots,$$

$$\lim_{r \to \infty} a_r = 2 + \sqrt{3}.$$
(9)

We remark that the coefficients for determining s'_i and p'_i are exactly the same under the end conditions (6).

Now we prove the following consistency relation:

THEOREM 1. Let p be a cubic spline-on-spline interpolant of the derivate of a cubic spline s. Then

$$(1/36)(p'_{i+2} + 8p'_{i+1} + 18p'_i + 8p'_{i-1} + p'_{i-2}) = (1/4h^2)(s_{i+2} - 2s_i + s_{i-2}) \qquad i = 2(1)n - 2.$$
(10)

Proof. By making use of the consistency relation (7) and interpolation condition (1)(ii), we have

$$(1/6)(p'_{i+1} + 4p'_i + p'_{i-1}) = (1/2h)(p_{i+1} - p_{i-1}) = (1/2h)(s'_{i+1} - s'_{i-1}), \qquad i = 1(1)n - 1.$$
(11)

Since $p'_{i+2} + 8p'_{i+1} + 18p'_i + 8p'_{i-1} + p'_{i-2} = (p'_{i+2} + 4p'_{i+1} + p'_i) + 4(p'_{i+1} + 4p'_i + p'_{i-1}) + (p'_i + 4p'_{i-1} + p'_{i-2})$, by (11) and (7), we have the desired relation.

Next we shall prove the following asymptotic error estimates:

THEOREM 2. Under the end conditions (6), let p be a cubic spline-onspline interpolant of s'. Then

(i)
$$f''_i - s''_i = (h^2/12)f_i^{(4)} - (h^4/360)f_i^{(6)} + O(h^{\min(6, r-1)}),$$

(ii) $f''_i - p'_i = (h^4/90)f_i^{(6)} - (h^6/756)f_i^{(8)} + O(h^{\min(7, r-1)}), \quad i = 0(1)n.$
(12)

Kershaw's technique [3] gives

COROLLARY. For any integer $r \ge 0$, we have the above asymptotic expansions with $O(h^6)$ and $O(h^7)$ instead of $O(h^{\min(6, r-1)})$ and $O(h^{\min(7, r-1)})$, respectively, for any mesh point x_i distinct from the endpoints.

Proof of Theorem 2. First we prove the asymptotic expansion (12)(ii). Since $s_i = f_i$, i = 0(1)n, by virtue of (7) we have

$$(1/6)(s'_{i+1} + 4s'_i + s'_{i-1}) = f'_i + (h^2/6)f_i^{(3)} + (h^4/120)f_i^{(5)} + (h^6/5040)f_i^{(7)} + \cdots, \qquad i = 1(1)n - 1.$$
(13)

Denoting $e(x) = f(x) - (h^4/180)f^{(4)}(x) + (h^6/1512)f^{(6)}(x) - s(x)$ by Taylor series expansion we have

(i)
$$\Delta^r e_0^r = O(h^r)$$
,

(ii) $(1/6)(e'_{i+1} + 4e'_i + e'_{i-1}) = O(h^8), \quad i = 1(1)n - 1,$ (14) (iii) $\nabla^r e'_n = O(h^r).$

By repeated use of (14)(ii), conditions (14)(i) and (iii) can be rewritten

for
$$r \neq 2$$
:
 $e'_0 + a_r e'_1 = O(h^{\min(8, r)}), \qquad e'_n + a_r e'_{n-1} = O(h^{\min(8, r)}),$
for $r = 2$:
 $e'_1 = O(h^2), \qquad e'_{n-1} = O(h^2).$
(15)

By applying a similar argument [4, 5] to a system of linear equations (15) and (14)(ii), we have

$$e'_i = O(h^{\min(8, r)}), \qquad i = 0(1)n,$$
 (16)

i.e.,

$$f'_{i} - s'_{i} = (h^{4}/180)f^{(5)}_{i} - (h^{6}/1512)f^{(7)}_{i} + O(h^{\min(8, r)}), \qquad i = 0(1)n.$$
(17)

From (11) and (17) we have

$$(1/6)(p'_{i+1} + 4p'_i + p'_{i-1}) = f''_i + (h^2/6)f^{(4)}_i + (h^4/360)f^{(6)}_i - (h^6/15120)f^{(8)}_i + O(h^{\min\{7, r-1\}}), \qquad i = 1(1)n - 1.$$
(18)

Using again a similar argument for a system of equations (18), together with (6)(ii), gives

$$f''_{i} - p'_{i} = (h^{4}/90)f'^{(6)}_{i} - (h^{6}/756)f'^{(8)}_{i} + O(h^{\min(7, r-1)}), \qquad i = 0(1)n.$$
(19)

Next we prove the asymptotic expansion (12)(i). The following consistency relations at the endpoints are well known:

(i)
$$(1/3)(2s_0'' + s_1'') = (2/h^2)(s_1 - s_0) - (2/h)s_0',$$
 (20)

(ii)
$$(1/3)(2s_n'' + s_{n-1}'') = (2/h^2)(s_n - s_{n-1}) + (2/h)s_n'.$$

Letting $e(x) = f(x) - (h^2/12)f^{(2)}(x) + (h^4/360)f^{(4)}(x) - s(x)$, by (17) (i = 0 and n) and (20) we have

(i)
$$(1/3)(2e_0'' + e_1'') = O(h^{\min(6, r-1)}),$$

(ii) $(1/6)(e_{i+1}'' + 4e_i'' + e_{i-1}'') = O(h^6), \quad i = 1(1)n - 1,$ (21)

(iii)
$$(1/3)(2e_n''+e_{n-1}'')=O(h^{\min(6, r-1)}).$$

Using again a similar argument yields the desired asymptotic expansion (12)(i).

Now let us denote by q a cubic spline-on-spline interpolant of the derivate of the cubic spline p. Then, as in the proof of Theorem 1, we have

$$(1/216)(q'_{i+3} + 12q'_{i+2} + 51q'_{i+1} + 88q'_i + 51q'_{i-1} + 12q'_{i-2} + q'_{i-3}) = (1/8h^3)(f_{i+3} - 3f_{i+3} + 3f_{i-1} - f_{i-3}), \qquad i = 3(1)n - 3.$$
(22)

Also, as in the proof of Theorem 2, we have

THEOREM 3. If $\Delta^r q'_0 = \nabla^r q'_n = 0$, then

$$f_i^{(3)} - q_i' = (h^4/60)f_i^{(7)} + O(h^{\min(6, r-2)}), \qquad i = 0(1)n.$$
(23)

In addition,

$$f_i^{(3)} - q_i' = (h^4/60)f_i^{(7)} + \cdots$$
(24)

for any mesh point x_1 distinct from the endpoints.

By combining the Corollary of Theorem 2 and Theorem 3, we obtain a uniform norm estimate

$$\max_{\substack{\alpha \leq x \leq \beta}} |f''(x) - q(x)| = O(h^4), \qquad h \to 0, \tag{25}$$

where α and β ($0 < \alpha < \beta < 1$) are constant independent of h.

X	e`		e^{5x}	
	$k_2(x)$	$k_3(x)$	$k_2(x)$	$k_3(x)$
1/4	1.00	1.05	1.00	1.03
1/2	1.00	1.00	1.00	1.00
3/4	1.00	1.07	0.99	1.13

TABLE I

3. NUMERICAL EXAMPLES

The results of some computational experiments are given in Table I for the functions e^x and e^{5x} . We choose n = 32 and

$$\Lambda^{6}s_{0}' = \nabla^{6}s_{n}' = 0, \qquad \Lambda^{6}p_{0}' = \nabla^{6}p_{n}' = 0 \qquad \Lambda^{6}q_{0}' = \nabla^{6}q_{n}' = 0.$$
(26)

Let

$$k_{2}(x) = \{f''(x) - p'(x)\} / \{(h^{4}/90)f^{(6)}(x)\},\$$

$$k_{3}(x) = \{f^{(3)}(x) - q'(x)\} / \{(h^{4}/60)f^{(7)}(x)\}.$$
(27)

Then, by (12)(ii) and (24), $k_2(x)$ and $k_3(x)$ tend to 1 for any fixed mesh point $x \in (\alpha, \beta)$ as $h \to 0$.

References

- 1. J. AHLBERG, E. NILSON AND J. WALSH, "The Theory of Splines and Their Applications," Academic Press, New York, 1967.
- 2. V. DOLEZAL AND P. TEWARSON, Error bounds for spline-on-spline interpolation, J. Approx. Theory 36 (1982), 213-225.
- 3. D. KERSHAW, The orders of the first derivatives of cubic splines at the knots, *Math. Comp.* 26 (1972), 191–198.
- T. LUCAS, Error bounds for interpolating cubic splines under various end conditions, SIAM J. Numer. Anal. 11 (1974), 569-584.
- 5. R. USMANI AND M. SAKAI, A note on quadratic spline interpolation at mid-points, *BIT* 22 (1982), 261-267.